
Chapter-1 
Transfer and Micro-
operations 

Register 

1.1 
1.2 

1.3 

1.4 

1.5 

1.6 

1.7 

Register – Transfer Language 
Register Transfer 

Bus Transfer and Memory Transfer 

Arithmetic Micro-Operations 

Logic micro operations Shift Micro 

operation. Arithmetic Logic Shift 

Unit 



Micro-operations 
Ref. Book Name : Computer System Architecture, M. Morris Mano 

Micro-operations are elementary operations performed on data store in 
registers or in memory. 

The Micro-operations most frequently encountered are of four types: 

i. 
ii. 

iii. 

iv. 

Transfer Micro-operations 
Arithmetic Micro-operations 

Logic Micro-operations 

Shift Micro-operations 



1.1 Register Transfer Language 
Ref. Book Name : Computer System Architecture, M. Morris Mano 

The symbolic notation used to describe the micro-operation transfers 
among registers is called a register transfer language. 

Information transferred from one register to another is designated by 
means of a replacement operator. 

The statement Denotes a transfer of the content of register R1 into 
register R2. 

R2  R1 

The content of source register R1 does not change after the transfer. 



1.2 Register Transfer 

When data is transferred from one register to another register is known as 
register transfer. 
Computer registers are designated by capital letters to denote the function 
of the register. 



1.2 Register Transfer 

To denote a transfer to occur only under a predetermined control 
condition 

if (P=1) then (R2  R1) 

Where P is a control signal generated in the control section. 

The control function is a Boolean variable that is equal to 1 or 0. It can also 
be denoted by 

P : R2  R1 

Control condition symbolizes the requirement that the transfer operation 
be executed by the hardware only if P=1. 



Transfer between registers 

P Load ck 

n 

Figure: Transfer from R1 to R2, when P=1. 

Clock 

Load 
Transfer occurs here 

Timing diagram 

R1 

R2 Clo 

 

Control 
Circuit 



1.3 Bus and Memory Transfers 
Transferring information between registers in a multiple register 
configuration is a common bus system. 

A bust structure consists of a set of common lines through which binary 
information is transferred one at a time. 

Control signals determine which register is selected by the bus during 
each particular register transfer. 

One way of constructing a common bus system is with multiplexers. 

The multiplexers select the source register whose binary information is 
then placed on the bus. 

The selection lines (S1, S0) choose the four bits of the register and transfer 
them to four line common bus. 



4 – line 
common 
bus 

D1 C1 B1 A1 D0 C0 B0 A0 D2 C2 B2 A2 

D2 D1 D0 

Register D Register C Register B Register A 

Figure: Bus system for four registers 

 

3 2
 1
 0 

 

C2  C1 

 C0 

 

3 2
 1
 0 

 

B2  B1 

 B0 

 

3 2
 1
 0 

 

A2  A1 

 A0 

 

3 2
 1
 0 

 

4x1 
MUX 3 

3 2
 1
 0 

 

S1 
 

S0 

 

4x1 
MUX 3 

3 2
 1
 0 

 

4x1 
MUX 3 

3 2
 1
 0 

 

4x1 
MUX 3 

3 2
 1
 0 



Three state Bus Buffers 

Buffer is a circuit used to boost up the signals for transmitting over long 
distance. 

Three state gate is a digital circuit that exhibits three states. 

Two of the states are signals equivalent to logic 1 and 0. 

The third state is a high-impedance state. 



Bus line for bit 0 
A0 

S0 
Select 

S1 

Enable 

Figure: Bus Line with three state buffer 

 

B0 

C0 

D0 

 

0 

2 x 4 1 
Decoder 2 

3 



Memory Transfer 

The transfer of information from memory to external environment is 
called a read operation. 

Transfer of new information to be stored into memory is called a write 
operation. 

Read Read : DR  M[AR] Address 

Write 
Write : M[AR]  R1 

R : MBR  MAR [MAR : Memory Buffer Register] 

W : MAR  MBR [MBR : Memory Address Register] 

MBR 

MAR 

 
Memory 

Unit 



1.4 Arithmetic Micro operations 
Ref. Book Name : Computer System Architecture, M. Morris Mano 

Basic arithmetic micro operations are addition, subtraction, increment, 
decrement and shift. 

R3  R1+R2 

R3 R1-R2 

R2  R2 

R2  R2 +1 



Binary Adder 

Digital circuit that generates the arithmetic sum of two binary numbers 
of any length is called binary adder. 

B3 A3 B2 A2 B1 A1 B0 A0 

C2 C1 C4 C0 

S3 S2 S1 S0 
Figure: 4-bit binary adder 

 

FA 
 

FA 
 

FA 
 

FA 



Binary Adder-Subtractor 

A2 A0 B3 A3 B2 B1 A1 B0 

C4 C3 C2 C1 C0 

S3 S2 S1 S0 
Figure: 4-bit binary adder-subtractor 

 

FA 
 

FA 
 

FA 
 

FA 

 

M 



Binary Adder-Subtractor 
The subtraction A-B can be done by taking the 2’s complement of B and 
adding it to A. 

The mode input M controls the operation. 

When M=0 the circuit is an adder. 

When M=1 the circuit becomes a subtractor. 

Each exclusive-OR gate receives input M and one of the inputs of B. 

When M=0, we have B 0 = B, Full adders receive the value of B, input carry 
is 0 (C0 is connected to M), and circuit performs A+B. 

When M=1, we have B 1 = B’ and C0=1. The B inputs are all 
complemented (B’) and 1 is added through input carry. 

Circuit performs A + 2’s complement of B. 



Binary Adder-Subtractor 

Subtraction of B from A is written as 
A = A + 2’s complement of B =>(B’+1) 

For example, 

A = 10112 = 1110 

B = 10012 = 910 

1’s complement of register B is B’ = 01102 

2’s complement of B is B’ + 1 = 0110 + 1 = 01112 

Now add A to 2’s complement of B 

1011 
+ 0111 
-----------
--- 

A 
2’s complement of B 

1) 0010 = 210 

Result 
Output carry 



Binary Incrementer 

The increment micro-operation adds one to a number in register. 

A3 A2 A1 A0 1 

C3 C2 C1 
C4 S3 S2 S1 S0 

Figure: 4-bit binary incrementer 

X  Y  

HA 

C S 

X  Y  

HA 

C S 

X  Y  

HA 

C S 

X  Y  

HA 

C S 



Binary Incrementer 

One of the inputs of the half-adder is connected to logic 1. 

Other input is connected to the least significant bit of the number to be 
incremented. 

Output carry from one half-adder is connected to one of the inputs of the 
next higher order half-adder. 

Circuit receives four bits from A0 through A3, adds 1 to it, and generates the 
incremented output S0 through S3. 

Output carry C4 will be 1 only after incrementing binary 1111. 

Circuit can be extended to an n-bit binary incrementer by extending the 
diagram to include n half-adders. 



Arithmetic Circuit 

The basic component of an arithmetic circuit is the parallel adder. 

The four inputs from A go directly to the X inputs of the binary adder. 

Each of the four inputs from B are connected to the data inputs of the 
multiplexers. 

The data input of multiplexers also receive complement of B. 

The other two data inputs are connected to logic-0 and 1. 

The four multiplexers are controlled by two selection inputs, S1 and S0. 

The output of the binary adder is calculated from the following arithmetic 
sum: 
D = A + Y + Cin 



Cin 
S1 

S0 

A0 

D0 

S0 
B0 

MUX 1 

A1 

D1 

B1 
1 MUX 

A2 

D2 
S0 

B2 
MUX 1 

A3 

D3 
S0 

B3 
MUX 1 

0 1 Figure: 4 – bit arithmetic circuit 

X0 C0 

FA 

Y0 C1 

S1 

0 4 x 1 

2 
3 

X1 C1 

FA 

Y1 C2 

S1 
S0 
0 4 x 1 
2 
3 

X2 C2 

FA 

Y2 C3 

S1 

0 4 x 1 

2 
3 

X3 C3 

FA 

Y3 C4 

S1 

0 4 x 1 

2 
3 



Arithmetic circuit function table 

Select Input Output  

Micro-operation 
S1 S0 Cin Y D=A+Y+Cin 

0 0 0 B D=A+B Add 

0 0 1 B D=A+B+1 Add with carry 

0 1 0 B’ D=A+B’ Subtract with borrow 

0 1 1 B’ D=A+B’+1 Subtract 

1 0 0 0 D=A Transfer A 

1 0 1 0 D=A+1 Increment A 

1 1 0 1 D=A-1 Decrement A 

1 1 1 1 D=A Transfer A 



= X  

1.5 Logic Micro-operations 
Ref. Book Name : Computer System Architecture, M. Morris Mano 

X 
Y 

0 0 1 1 Boolean 
Function 

 

Micro-operation 
 

Name 
0 1 0 1 

0 0 0 0 F0 = 0 F  0 Clear 

0 0 0 1 F1 = XY F  A Λ B AND 

0 0 1 0 F2 = XY’ F  A Λ B 

0 0 1 1 F3 = X F  A Transfer A 

0 1 0 0 F4 = X’Y F  A Λ B 

0 1 0 1 F5 = Y F  B Transfer B 

0 1 1 0 F6 Y F A B Exclusive OR 

0 1 1 1 F7 = X + Y F  A V B OR 



1.5 Logic Micro-operations 

X 
Y 

0 0 1 1 Boolean 
Function 

 

Micro-operation 
 

Name 
0 1 0 1 

1 0 0 0 F8 = (X + Y)’ F  A V B NOR 

1 0 0 1 F9 = (X Y)’ F  A B Exclusive NOR 

1 0 1 0 F10 = Y’ F  B Complement B 

1 0 1 1 F11 = X + Y’ F  A V B 

1 1 0 0 F12 = X’ F  A Complement A 

1 1 0 1 F13 = X’ + Y F  A V B 

1 1 1 0 F14 = (XY)’ F  A Λ B NAND 

1 1 1 1 F15 = 1 F  all 1’s Set to all 1’s 



Hardware Implementation 

Logic micro-operations specify binary operations for strings of bits stored 
in register. 
Most computers use only 4 

micro-operations : 

S1 
S0 

1. 
2. 

3. 

4. 

AND 
OR 

XOR 

Complement put 

Figure: One stage of logic circuit 

S1 S0 Output Operation 

0 0 E = A Λ B AND 

0 1 E = A V B OR 

1 0 E = A B XOR 

1 1 E = A Complement 

 

4 x 1 
MUX 

 

Out 



Applications of Logic Micro-operation 

Selective set 
• The selective set operation sets to 1 the bits in register A where there are 

corresponding 1’s in register B. 

• 

• 

It does not affect bit positions that have 0’s in B. 
For example: 

1 0 1 0 
1 1 0 0 

A before 

B logic operand 

1 1 1 0 A after 

• 

• 

A: Processor Register 
B: Logic operand extracted from memory 

• OR micro-operation can be used to selectively set bits of a register. 



Selective Complement 
• This operation complements bits in A where there are corresponding bits 

in A where there are corresponding 1’s in B. 
For example, • 

1 0 1 0 
  1 
1 0 0   

A before 

B logic operand 

A after 0 1 1 0 

• Exclusive-OR micro-operation can be used for selective complement. 

Selective Clear 
• The selective clear operation clears to 0 the bits in A only where there 

are corresponding 1’s in B. 
For example, • 

1 0 1 0 
  1 
1 0 0   

A before 

B logic operand 

A after 0 1 1 0 

• Corresponding logic micro-operation is A  A Λ B 



Mask (Delete) 
• The mask operation is similar to the selective clear operation except that 

the bits of A are cleared only where there are corresponding 0’s in B. 

• For example, 
1 0 1 0 
1 1 0 0 

A before 

B logic operand 

1 0 0 0 A after 

• The mask operation is an AND micro-operation 



Insert 
• The insert operation inserts a new value into group of bits. 

• This is done by first masking the bits and then ORing them with the  
required value. 
For example, • 

A before 

B (mask) 

0 1 1 0 1 0 1 0 
0 0 0 0 1 1 1 1 

0 0 0 0 1 0 1 0 A after masking 

• Now insert the new value 
0 1 1 0 1 0 1 0 

   1 0 0 1 1 1 1 1   

A before 

B (insert) 

1 0 0 1 1 0 1 0 A after insertion 



1.6 Shift Micro-operations 
Ref. Book Name : Computer System Architecture, M. Morris Mano 

Shift micro-operations are used for serial transfer of data. 

The contents of a register can be shifted to the left or to the right. 

The information transferred through the serial input determines the type 
of shift. There are three types of shifts: 

1. 
2. 

3. 

Logical Shift 
Circular Shift 

Arithmetic Shift 



1.6 Shift Micro-operations 

1. Logical Shift 

A logical shift is one that transfers 0 through the serial input. 

The symbols shl  and shr denotes logical shift. 

R1  shl R1 
R2  shr R2. 

2. Circular Shift (rotate operation) 
The circular shift circulates the bits of the register around the two ends 
without loss of information. 

cil denotes circular shift left 
cir denotes circular shift right. 



1.6 Shift Micro-operations 

3. Arithmetic Shift 

An arithmetic shift is a micro-operation that shifts a signed binary number to 
the left or right. 

An arithmetic shift-left multiplies a signed binary number by 2. 

An arithmetic shift-right divides the number by 2. 

Sign-bit 0 - Positive, 
1 - Negative 

 

Rn-1 

 

Rn-2 

 

   
 

R1 
 

R0 



1.7 Arithmetic Logic Shift Unit 

Fi 

Bi 
Ai 

Ai-1 
Figure: One stage of arithmetic logic shift unit Ai+1 

S3 
S2 

S1 

S0 
Ci 

 

One stage of 
arithmetic 

circuit 

 

Di 

 
Select 

0 4 x 1 
1 

2

 MU
X 
3 

 

Ci + 1 

 

One stage of 
logic circuit Ei 

 

shr 
shl 



Function table for Arithmetic Logic Shift Unit 
Operation Select 

 

Cin 

 

Operation 

 

Function 
S3 S2 S1 S0 

0 0 0 0 0 F = A Transfer A 

0 0 0 0 1 F = A + 1 Increment A 

0 0 0 1 0 F = A + B Addition 

0 0 0 1 1 F = A + B + 1 Add with carry 

0 0 1 0 0 F = A + B’ Subtract with borrow 

0 0 1 0 1 F = A + B’ + 1 Subtraction 

0 0 1 1 0 F = A – 1 Decrement 

0 0 1 1 1 F = A Transfer A 

0 1 0 0 X F = A Λ B AND 

0 1 0 1 X F = A V B OR 

0 1 1 0 X F = A B XOR 

0 1 1 1 X F = A’ Complement 

1 0 X X X F = shr A Shift right A into F 

1 1 X X X F = shl A Shift left A into F 


