Advance Database Management System

UNIT-2

Que: Basics of PL / SQL

» Basic Syntax of PL/SQL which is a block-structured language;
» This means that the PL/SQL programs are divided and written in logical blocks of code.

Que: PL/SQL blocks Styructure

Declare section (optional)
Executable section (mandatory)
Exception-handling section (optional)

Here

» The executable section is the only mandatory section of the block.

Ky

» Both the declaration and exception-handling sections are optional.

DECLARE
<declarations section>

BEGIN
<executable command(s)>

EXCEPTION
<exception handling>

END;

» Place a semicolon (;) at the end of a SQL statement or PL/SQL control statement.
» Section keywords DECLARE, BEGIN, and EXCEPTION are not followed by semicolons.
» END and all other PL/SQL statements require a semicolon to terminate the statement.

—

—_

. MO
The different parts/sections of a PL/SQL block are discussed as below. "

The declare section contains the definitions of variables and other objects
such as constants and cursors etc.

This section is an optional part of a PL/SQL block.

The procedure section contains conditional comm
3 ands and SQL statem
and is where the block is controlled. Statements

This section is the only mandatory part of a PL/SQL block.

The exception section tells the PL/SQL block how to handle specifie
errors and user-defined exceptions.

This section is an optional part of a PL/SQL block.

l1|Page

Example:

The 'Hello World' Example

DECLARE
a varchar2(20):="Hello, World!';
BEGIN
dbms_output.put_line(a);
END;
/

Difference between PL/SQL AND SQL

Advance Database Management System

SQL

PL/SQL

SQLis a Structured Query
Language.

PL-SQL is a procedural
Structured Query Language.

SQL is executed one statementat a
time.

PL/SQL is executed as a block ofcode.

SQL is used to write
Queries, DDL and DML statementsts.

PL/SQL is used to write programblocks,
functions, procedures triggers, and

packages.
SQL does not support Exception PL/SQL support Exception
Handling. Handling.
SQL does not support variable SQL does not support variable
Declaration. Declaration.

2.3 PL/SQL DATA-TYPES

When writing PL/SQL blocks, you will be declaring variables, which must be

In PL/SQL Oracle provides subtypes of data types. For example, the data
typec NUMBER has a subtype called INTEGER. You can use subtypes in
your PL/SQL program to make the data types compatible with data types in
other programs, such as a COBOL program, particularly if you are embedding
PL/SQL code in another program. Subtypes are simply alternative names for
Oracle data types and therefore must follow the rules of their associated

Cl_laracter string data types: Character string data types in PL/SQL, as you
might expect, are data types generally defined as having alpha-numeric values.

Examples of character strings are names, codes, descriptions, and serial

—
valid data types.
data type.

—

—

. numbers that include characters.

CHAR stores fixed-length character strings. The maximum length of CHAR
is 32,767 bytes.

Syntax : char (max_length)
Subtype : character

— age

")

Advance Database Management System

varchar2 stores variable-length character strings. You would normally user
varchar2 instead of char to store variable-length data, such as an individual’s
name. The maximum length of varchar2 is also 32,767 bytes.

Char is faster than varchar2, sometime it is up to 50%.

e

Syntax : varchar2 (max_length)

g:btypea : varchar, string

long also stores variable-length character strings, having a maximum length
of 32,760 bytes. long is typically used to store lengthy text such as remarks,
although varchar2 may be used as well.

Numeric data types: number stores any type of number in an Oracle
database.

Syntax : number (max_length)

You may specify a number’s data precision with the following syntax.
number (precision, scale)

Subtypes : dec, decimal, double precision, integer, int, numeric, real,

smallint, float

s: Binary data types store data that is in a binary

s fim ehics or photographs. These data types include raw and

format, such as grap

longraw. . :
The date data type: date is the valid Oracle data type 1n which to store

t specify a length, as
define a column as a date, you do no .
?}?:efén‘:t];lezfyzudate field is implied. The format of an Oracle date is, for

example, 01-oct-97. .
boolean: boolean stores the following
date, boolean requires no parameters W
variable’s data type.

rowid: rowid is a psel
database. The ROWID is
a table. Indexes use rowl

values: true, false, and null. ,Like
hen defining it as a column’s or

i i table in an Oracle
do-column that exists in every tab]
i stored in binary format and identifies each row 1n

ds as pointers to data.

Advantages of PL/SQL

® N W

It is a standard database language and PL/SQL is strongly integrated with SQL.
PL/SQL supports both static and also dynamic SQL.

Also, it then allows sending an entire block of statements to the database at one time.
Applications that are written in PL/SQL languages are portable.

This provides high security level.

It also provides access to the predefined SQL packages.

It also supports for Object-oriented programming.

It provides support for developing web applications and server pages.

3|Page

2.5

2.6

Advance Database Management System

COMMENTS
Programming languages provide commands that allow you to place comments
within your code, and PL/SQL is no exception.

The comments after each line in the preceding sample block structure
describe each command.

The comments given may be for purposes to give idea about code, give
information about author, give information about when coding was started

ctc.
The accepted comments in PL/SQL are as follows.

—— This is a one-line comment.
/* This is a
multiple-line comment.*/

PL/SQL ATTRIBUTES

There are two types of attributes.
(1) %type |2] %rowtype

Ytype:

When user wants to assign particular data type to a variable then %type
may be useful.

If we do not know data type of rno of student table but still we want to
assign data type of rno to some variable then we have to use %type.

4|Page

Advance Database Management System

= Following is syntax.

Variable-name table-name. column-name %type;

—

Following is example.

‘declare
roll student.rno%type := &roll;
: m student.mark%type;
begin
select mark into m from student where rno=roll;
dbms_output.put_line(roll || ** || m);
end;

Output:

Enter value for roll: 9
9 b6

PL/SQL procedure successfully completed.

%rowtype :
— When user wants to assign every column data type to a single variable then
%rowtype may be useful.

—= The variable which contains %rowtype attribute can store complete record.
- Following is syntax.

Variable-name table-name %rowtype;

- Following is example.

declare
roll student.rno%type := &roll;
S student%type;
begin
select * into s from student where rno=roll;
dbms_output.put_line(s.rno || ** || s.mark);

end; _ _d

Output:
Enter value for roll: 9
9 56
PL/SQL procedure successfully completed.

5|Page

Advance Database Management System

Que:Control Structures :

Conditional

» IF THEN

» IF THEN ELSE

» IF THEN ELSIF

» Nested IF THEN ELSE

Iterative
LOOP - EXIT WHEN - END LOOP
FOR - LOOP - END LOOP
WHILE - LOOP - END LOOP
Sequential
GOTO statement
Conditional
% IF....ENDIF
» if then statement is the most simple decision-making statement.
» Itis used to decide whether a certain statement or block of statements will be executed
or not.
Syntax: Example:
decl
IF (condition) THEN o eree 30.
Statement; b number:= 20;
END IF; begin
statement; ifa>b then R
dbms_output.put_line('a is max");
end if;
dbms_output.put_line('b is max');
end;

6|Page

Advance Database Management System

IF...... THEN.......... ELSE

» A sequence of [F-THEN statements can be followed by an optional sequence of ELSE
statements, which execute when the condition is FALSE

declare
IF (condition) THEN a number:= 10;
statement; b number:= 20;
ELSE
statement; begin
END IF
ifa>b then
dbms_output.put_line('a is max');
else
dbms_output.put_line('b is max');
end if;
end;
< IF ... THEN............ ELSIF............ ELSIF............ELSE

.

» The IF-THEN-ELSIF statement allows you to choose between several alternatives. An
IF-THEN statement can be followed by an optional ELSIF...ELSE statement. The ELSIF
clause lets you add additional conditions.

IF (condition-1) THEN DECLARE
statement-1; anumber :=100;
ELSIF (condition-2) THEN BEGIN
statement-2; IF(a=10) THEN
ELSIF (condition-3) THEN dbms_output.put_line('Value of ais 10");
statement-3; ELSIF (a=20) THEN
ELSE dbms_output.put_line('Value of ais 20");
statement; ELSIF (a=30) THEN
END IF; dbms_output.put_line('Value of ais 30");
ELSE
dbms_output.put_line('None of the values is matching');
END IF;
END;
/

7|Page

¢ Nested IF........ THEN..........ELSE

Advance Database Management System

IF (condition-1) THEN
IF (condition-2) THEN
statement-1;
ELSE
IF (condition-2) THEN
statements-3;
END IF;
END IF;
END;

DECLARE

a number :=10;
b number := 20;
c number := 30;
BEGIN

if(a>b) THEN

if(a>c) THEN
dbms_output.put_line('a is max');
else
dbms_output.put_line('cis max');
end if;

else

if(b>c) then

dbms_output.put_line('b is max');
else

dbms_output.put_line('c is max');

end if;

end if;

end;

s Iterative

LOOP - EXIT WHEN - END LOOP

Syntax
LOOP

Sequence of statements;

END LOOP;

Here, the sequence of statement(s) may be a single statement or a block of statements.
An EXIT statement or an EXIT WHEN statement is required to break the loop

8|Page

Example

Ul W N =

DECLARE
anumber :=1;
BEGIN
LOOP
dbms_output.put_line(a);
a:=a+1;
exitwhena>5;
exit;
END LOOP;
End;

/

s FOR-LOOP -END LOOP
A FORLOOP is a repetition control structure that allows you to efficiently write a loop that
needs to execute a specific number of times.

Advance Database Management System

Syntax
FOR variable in[reverse] start....end
LOOP
Satements;
END LOOP;
DECLARE Reverse FOR LOOP
a number; DECLARE
BEGIN anumber(2);
FORain 10.. 20 BEGIN
LOOP FOR a IN REVERSE 10 .. 20 LOOP
dbms_output.put_line(a); dbms_output.put_line('value of a: ' || a);
END LOOP; END LOOP;
END; END;
/ /

9|Page

+ WHILE - LOOP - END LOOP

Advance Database Management System

A WHILE LOOP statement in PL/SQL programming language repeatedly executes a target
statement as long as a given condition is true.

Syntax
WHILE condition
Loop
statements
END LOOP;

Example
DECLARE
anumber :=1;
BEGIN
WHILEa<5
LOOP
dbms_output.put_line(a);
a:=a+1;
END LOOP;
END;

+ Sequential
GOTO statement

» goto statement provides an unconditional jump from the GOTO to a labeled statement

in the same subprogram.

ko

Syntax
GOTO label_name;
statements
<<|label_name>>
Statement;

» Alabel can be declare with the << label >>

Example:
DECLARE
A number = 1;
BEGIN
<<loop1>>

WHILE a<= 10 LOOP
dbms_output.put_line (a);
a:=a+ 1;

IFa=5THEN
a:=a+1;
GOTO loop1;

END IF;

END LOOP;

END;

/

10|Page

Advance Database Management System

Que: Exceptions: Predefined Exceptions, User defined exceptions
PL/SQL supports programmers to catch such conditions using EXCEPTION block in the

program and an appropriate action is taken against the error condition

Syntax

DECLARE
<declarations section>

BEGIN
<executable command(s)>

EXCEPTION

WHEN exception1 THEN
exceptionl statements

WHEN exception2 THEN
exception2-statements

WHEN exception3 THEN
exception3-statements

WHEN others THEN
Exception -statements

END;

There are two types of exceptions:
1. System (pre-defined) Exceptions
2. User-defined Exceptions

1. System (pre-defined) Exceptions

» Such exceptions are the predefined names given by oracle for those exceptions that
occur most commonly.

Syntax
EXCEPTION
WHEN <exception_name> THEN

-- take action

11| Page

Advance Database Management System

There are number of pre-defined named exceptions available by default.

Named Exception

Meaning

LOGIN_DENIED

Occurs when invalid username or invalid password is given
while connecting to Oracle.

TOO_MANY_ROWS

Occurs when select statement returns more than one row.

VALUE_ERROR

Occurs when invalid datatype or size is given by the user.

NO_DATA_FOUND

Occurs when no records are found.

DUP_VAL_ON_INDEX

Occurs when a unique constraint is applied on some column and
execution of Insert or Update leads to creation of duplicate records
for that column.

PROGRAM_ERROR

Occurs when internal error arise in program.

ZERO_DIVIDE

Occurs when the division of any variable value is done by zero.

Example:
declare
a number := 10;
b number :=0;
¢ number;

begin
c:=a/b;

dbms_output.put_line(c);

exception

when zero_divide then
dbms_output.put_line('error: division by zero');

end;

2.User-defined Exceptions

declare

roll students.rno%type :=&roll;

m. student.mark%type;
s.exception;

begin

select mark into m from student where rno=roll;

if roll<50 then
raise s;
end if;

exception
when no_data_found then

dbms_output.put_line('no student found');

when value_error then

dbms_output.put_line('value error');

12| Page

W

Advance Database Management System

when s then
dbms_output.put_line(m’);
end;

output:
Enter value for roll:10
1070

Que: Cursors: Static (Implicit & Explicit), Dynamic
Cursors

T

» Cursor is a Temporary Memory or Temporary Work Station
» It is Allocated by Database Server at the Time of Performing DML(Data Manipulation
Language) operations on the Table by the User.

» Cursors are used to store Database Tables.

Implicit Cursor?

» Implicit cursors are automatically created by Oracle whenever an SQL statement is
executed, when there is no explicit cursor for the statement.

» Whenever a DML statement (INSERT, UPDATE and DELETE) is issued, an implicit
cursor is associated with this statement.

» For INSERT operations, the cursor holds the data that needs to be inserted.

» For UPDATE and DELETE operations, the cursor identifies the rows that would be
affected.

SQL cursor has several useful attributes.

%FOUND is true if the most recent SQL operation affected at least one row.
%NOTFOUND is true if it didn’t affect any rows.
%ROWCOUNT is returns the number of rows affected.
%ISOPEN checks if the cursor is open.
NAME CITY SALARY
AMIT HIMATNAGAR 35000
JAYESH | SURAT 40000
NISH AHMEDABAD 25000
NTIN BARODA 44000

13|Page

Advance Database Management System

DECLARE
totalrows number;
NAME CITY SALARY
BEGIN AMIT | HIMATNAGAR | 35500
UPDATE customers JAYESH SURAT 40500
SET salary = salary + 500; NISH | AHMEDABAD | 25500
IF sql%notfound THEN NTIN BARODA 44500
dbms_output.put_line('no customers updated’);
ELSIF sql%found THEN

totalrows := sql%rowcount;
dbms_output.put_line(totalrows || ' customers updated ');
END IF;
END;

/

Explicit Cursor

Explicit Cursors: Explicit Cursors are created by Users whenever the user requires them.
Explicit Cursors are used for Fetching data from Table in Row-By-Row Manner.

Declare the cursor to initialize in the memory.
Open the cursor to allocate memory.

Fetch the cursor to retrieve data.

Close the cursor to release allocated memory.

N .

1. Declare

Syntax:
DECLARE cursor_name CURSOR IS SELECT * FROM table_name

Query:
DECLARE s1 CURSOR IS SELECT * FROM studDetails

2. Open Cursor Connection
Syntax:
OPEN cursor_name

Query:
OPEN s1

3. Fetch Data from the Cursor There is a total of 6 methods to access data from the
cursor. They are as follows:

FIRST is used to fetch only the first row from the cursor table.

LAST is used to fetch only the last row from the cursor table.

NEXT is used to fetch data in a forward direction from the cursor table.

PRIOR is used to fetch data in a backward direction from the cursor table.

ABSOLUTE n is used to fetch the exact nth row from the cursor table.

RELATIVE n is used to fetch the data in an incremental way as well as a decremental way:.

YV VVVVYV

14| Page

Advance Database Management System

Syntax:
FETCH fetch_data FROM cursor name

FETCH FIRST FROM s1

4, Close cursor connection
Syntax:
CLOSE cursor_name

Query:

CLOSE s1

Example:

Customers
NAME CITY SALARY
AMIT HIMATNAGAR | 35000
JAYESH | SURAT 40000
NISH AHMEDABAD 25000
NTIN BARODA 44000

DECLARE

c_name customer.name%type;
c_city customer.city%type;

CURSOR c_customer is SELECT name, city FROM customer;

BEGIN
OPEN c_customer;
LOOP
FETCH c_customer into c_name, c_city;
EXIT WHEN c_customer%notfound;
dbms_output.put_line(c_name || "' || c_city);
END LOOP;

CLOSE c_customer;
END;

Output:

AMIT HIMATNAGAR
JAYESH SURAT
NISH AHMEDABAD
NTIN BARODA

Statement processed.

15|Page

Advance Database Management System

Que: Procedures & Functions

*

¢+ Stored Procedures

» Astored procedure is a prepared SQL code that you can save, so the code can be reused

over and over again.

Syntax:

CREATE [OR REPLACE] PROCEDURE procedure_name
[(parameter [IN | OUT | INOUT.....])]

IS
[declaration_section]

BEGIN
executable_section

[EXCEPTION exception_section]

END [procedure_name];
Example:

Table creation:
Create table s2(id number(10), name varchar2(100));

Procedure Code:

create or replace procedure "INSERTUSER"
(id IN NUMBER, name IN VARCHAR?2)

is
begin
insert into s2 values(id,name);
end;
BEGIN
insertuser(101,'Amit'); ID Name
dbms_output.put_line('record inserted successfully'); 101 Amit
END;

16| Page

Function

Y 0:0

Advance Database Management System

The main difference between procedure and a function is, a function must always

return a value, and on the other hand a procedure may or may not return a value.
» A stored function is a set of SQL statements that perform some operation and return a

single value.

Syntax:

CREATE [OR REPLACE] FUNCTION function_name [parameters]
[(parameter_name [IN | OUT | IN OUT] type [, ...])]

RETURN return_datatype
{IS | AS}
BEGIN

< function_body >

END [function_name];

Example:1

Create a function.

create or replace function adder
(n1 in number, n2 in number)

return number

is

n3 number(8);

begin

n3 :=nl+n2;

return n3;
end;

Call the function.

DECLARE
n3 number(2);
BEGIN
n3 :=adder(11,22);
dbms_output.put_line('Addition is: ' || n3);
END;

Output:
Addition is: 33
Statement processed.
0.05 seconds

Difference between Procedures and Functions are given below:

Functions

Procedures

o A function must return a value.

o A procedure may or may not return a value.

A function can return only one value.

o A procedure can return multiple values.

A function can be used with SELECT |o A procedure cannot be used with SELECT
statement, like in-built SQL functions.

statement.

command.

o A function cannot directly execute using EXEC | o A procedure can directly execute using EXEC

command.

17 |Page

Advance Database Management System

Que: Packages: Package specification, Package body, Advantages of package

A package is one Kind of database object.

It is used to group together logically related objects like variables, constants, cursors,
exceptions, procedures and functions.

A successfully compiled package is stored in oracle database like procedures and
functions.

» Unlike procedure and functions, package itself cannot be called.

Y VY

A7

Structure of a Package — A package contains two sections:
1) Package Specification
2) Package Body

While creating packages, package specification and package body are created separately.

Package Specification:
» Various objects (like variables, constants etc..) to be held by package are
Declared in this section.
» This declaration is global to the package, means accessible from anywhere in
the package.

Syntax:
CREATE OR REPLACE PACKAGE packageName
IS /AS
Package Specification
END packageName;

Package specification consists of list of variables, constants, functions, procedures and
CUrsors.

Example

CREATE OR REPLACE PACKAGE MathOperations AS
PROCEDURE AddNumbers(a IN NUMBER, b IN NUMBER, result OUT NUMBER);
END MathOperations;

/

18| Page

Advance Database Management System

Package Body:
» It contains the formal definition of all the objects declared in the specification
section.

Syntax:

CREATE OR REPLACE PACKAGE BODY packageName
IS/AS

package body

END packageName;

If a package contains only variables, constants and exceptions then package body is
optional.

Example

CREATE OR REPLACE PACKAGE BODY MathOperations AS
PROCEDURE AddNumbers(a IN NUMBER, b IN NUMBER, result OUT NUMBER) IS
BEGIN

result:=a +b;
END AddNumbers;

END MathOperations;

/

Now, you can use the MathOperations package in a PL/SQL block:

DECLARE

sum_result NUMBER;

BEGIN

MathOperations.AddNumbers(10, 5, sum_result);
DBMS_OUTPUT.PUT_LINE('Sum Result: ' || sum_result);

END;
/

19| Page

Advance Database Management System

Advantages
e Advantages of package are given below:
1) Modularity:
o Package provides modular approach to programming.
o Itis always to better to write more than one smaller programs instead of one large program.
2) Security:
o Programs can be created to provide various functionalities and can be group together into
packages.
o Privileges can be granted to these packages rather than entire tables. So, privileges can be
granted efficiently.
3) Improved Performance:
o An entire package, including all objects within it, is loaded into memory when the first
component is accessed.
o This eliminates additional calls to other related objects which results in reduced disk 1/0.
o So, performance can be improved.
4) Sharing of Code:
o Once a package is created, objects in that package can be shared among multiple users.
o This reduces the redundant coding.

5) Overloading of procedures and functions:
o Procedures and functions can be overloaded using packages.

Que: Fundamentals of Database Triggers /| Creating Triggers/ Types of Triggers:
Before, after for each row, for each statement

» Triggers are the SQL statements that are automatically executed when there is any
change in the database.

» The triggers are executed in response to certain events (INSERT, UPDATE or
DELETE) in a particular table.

The advantages of triggers are as given below:

o To prevent misuse of database.

o Toimplement automatic backup of the database.

o Toimplement business rule constraints, such as balance should not be negative.
o Based on change in one table, we want to update other table.

20| Page

Advance Database Management System

Syntax

CREATE TRIGGER Trigger_name

(BEFORE | AFTER)
ON [table_name]

[for each row]

[trigger_body]
DECLARE

Declaration section

BEGIN

Executable statements
EXCEPTION

Exception handling
END;

1. CREATE TRIGGER: specify that a triggered block is going to be declared.
2. TRIGGER_NAME: It creates or replaces an existing trigger with the Trigger_name.

BEFORE | AFTER: It specifies when the trigger will be initiated i.e. before the ongoing
event or after the ongoing event.

INSERT | UPDATE | DELETE : These are the DML operations and we can use either of
them in a given trigger.

ON[TABLE_NAME]: It specifies the name of the table on which the trigger is going to
be applied.

FOR EACH ROW: Row-level trigger gets executed when any row value of any column
changes.

TRIGGER BODY: It consists of queries that need to be executed when the trigger is
called.

Types of Triggers

BEFORE Triggers:

» Executed before the triggering event (e.g., INSERT, UPDATE, DELETE).
» Commonly used for validation or modification of data before the change occurs.
» Specified using the BEFORE keyword.

AFTER Triggers:

\

» Executed after the triggering event has occurred and the changes have been made.
» Often used for tasks that need to be performed after the data has been modified.
» Specified using the AFTER keyword.

21| Page

Advance Database Management System

Row-level Triggers:

» Operate on each row affected by the triggering event.
» Specified using the FOR EACH ROW clause.

Statement-level Triggers:

» Operate once for each triggering event, regardless of the number of rows affected.
» Do notuse the FOR EACH ROW clause.

Example
STUDENT
ROLLNO SNAME AGE COURSE

11 Anu 20 BSC
12 Asha 21 BCOM
13 Arpit 18 BCA
14 Chetan 20 BCA
15 Nihal 19 BBA

CREATE OR REPLACE TRIGGER CheckAge
BEFORE
INSERT OR UPDATE ON student
FOR EACH ROW
BEGIN
IF :new.Age>30 THEN
raise_application_error(-20001, 'Age should not be greater than 30°);
END IF;
END;

After initializing the trigger CheckAge, whenever we will insert any new values or
update the existing values in the above table STUDENT our trigger will check the age
before executing INSERT or UPDATE statements and according to the result of
triggering restriction or condition it will execute the statement.

INSERT into STUDENT values(16, 'Saina’, 32, 'BCOM');

Output:
Age should not be greater than 30

22| Page

Advance Database Management System
Advantages of Triggers in SQL

Helps us to automate the data alterations.
Allows us to reuse the queries once written.
Provides a method to check the data integrity of the database.

Helps us to detect errors on the database level.

i B W N

Allows easy auditing of data.

Disadvantages of Triggers in SQL

1. Increases the overhead costs of the server.

2. Provides only extended validations i.e. not all validations are accessible in SQL triggers.
3. Troubleshooting errors due to triggers is a tedious job.

4. Can cause logical errors in the application even if a slight mistake in query exists.

5. We could lose the original data if we set a wrong trigger by mistake.

23| Page

